论文标题
部分可观测时空混沌系统的无模型预测
Do We Need to Penalize Variance of Losses for Learning with Label Noise?
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Algorithms which minimize the averaged loss have been widely designed for dealing with noisy labels. Intuitively, when there is a finite training sample, penalizing the variance of losses will improve the stability and generalization of the algorithms. Interestingly, we found that the variance should be increased for the problem of learning with noisy labels. Specifically, increasing the variance will boost the memorization effects and reduce the harmfulness of incorrect labels. By exploiting the label noise transition matrix, regularizers can be easily designed to reduce the variance of losses and be plugged in many existing algorithms. Empirically, the proposed method by increasing the variance of losses significantly improves the generalization ability of baselines on both synthetic and real-world datasets.