论文标题

通过利用ECRAM MEMRISTOR的复杂波动来构建时间表面

Building time-surfaces by exploiting the complex volatility of an ECRAM memristor

论文作者

Rasetto, Marco, Wan, Qingzhou, Akolkar, Himanshu, Xiong, Feng, Shi, Bertram, Benosman, Ryad

论文摘要

由于其充当可编程突触的能力,将处理和内存结合到单个设备中,新的备忘录已成为一种有前途的技术,用于有效的神经形态体系结构。尽管它们最常用于突触重量的静态编码,但最近的工作已经开始研究其动力学特性(例如短期可塑性(STP)),以将事件随时间整合到基于事件的架构中。但是,我们仍然完全不完全了解可能行为的范围以及如何在神经形态计算中利用它们。这项工作着重于新开发的li $ _ \ textbf {x} $ wo $ _ \ textbf {3} $ - 基于三末端的备忘录,该端子表现出可调的STP和由双重指数衰减模拟的电导响应。我们从实验数据中得出了设备的随机模型,并研究了设备随机性,STP和双指数衰减如何影响时间曲面(HOTS)体系结构层次结构的精度。我们发现该设备的随机性不会影响准确性,STP可以减少基于事件的传感器信号中盐和胡椒噪声的效果,并且双指数衰减通过在多个时间尺度上集成时间信息来提高准确性。我们可以将我们的方法推广以研究其他回忆设备,以更好地理解对时间动态的控制如何使神经形态工程师能够微调设备和体系结构,从而适应他们的问题。

Memristors have emerged as a promising technology for efficient neuromorphic architectures owing to their ability to act as programmable synapses, combining processing and memory into a single device. Although they are most commonly used for static encoding of synaptic weights, recent work has begun to investigate the use of their dynamical properties, such as Short Term Plasticity (STP), to integrate events over time in event-based architectures. However, we are still far from completely understanding the range of possible behaviors and how they might be exploited in neuromorphic computation. This work focuses on a newly developed Li$_\textbf{x}$WO$_\textbf{3}$-based three-terminal memristor that exhibits tunable STP and a conductance response modeled by a double exponential decay. We derive a stochastic model of the device from experimental data and investigate how device stochasticity, STP, and the double exponential decay affect accuracy in a hierarchy of time-surfaces (HOTS) architecture. We found that the device's stochasticity does not affect accuracy, that STP can reduce the effect of salt and pepper noise in signals from event-based sensors, and that the double exponential decay improves accuracy by integrating temporal information over multiple time scales. Our approach can be generalized to study other memristive devices to build a better understanding of how control over temporal dynamics can enable neuromorphic engineers to fine-tune devices and architectures to fit their problems at hand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源