论文标题

地图方程中心:基于地图方程的社区意识中心性

Map Equation Centrality: Community-aware Centrality based on the Map Equation

论文作者

Blöcker, Christopher, Nieves, Juan Carlos, Rosvall, Martin

论文摘要

为了衡量节点的重要性,网络科学家采用了通常采用显微镜或宏观透视的中心分数,依靠节点特征或全球网络结构。但是,传统的集中度衡量等级中心性,中间性中心性或Pagerank忽略了现实世界网络中发现的社区结构。为了根据介绍角度研究基于网络流的重要性,我们根据网络流和地图方程背后的编码原理得出了分析性的社区意识信息理论理论中心性评分:地图方程中心性。 MAP方程中心性通过使用改编的编码方案来编码随机的Walker过渡到相应的节点,可以衡量我们可以进一步压缩网络的模块化描述,并从基于网络流的观点确定节点的重要性。信息理论中心度度量可以仅从节点的本地网络上下文确定,因为对编码方案的变化仅影响同一模块中的其他节点。 MAP方程中心性是所选网络流模型的不可知论,并允许研究人员选择最能反映所研究过程动态的模型。应用于合成网络,我们强调了我们的方法如何使节点之间的差异比节点 - 局部或网络全球量度更为细粒度。通过传统和其他社区感知的中心度度量预测在现实世界网络上的两个不同动力学过程的有影响力的节点,我们发现基于MAP方程中心度得分的激活节点往往会在线性阈值模型中创建最大的级联反应。

To measure node importance, network scientists employ centrality scores that typically take a microscopic or macroscopic perspective, relying on node features or global network structure. However, traditional centrality measures such as degree centrality, betweenness centrality, or PageRank neglect the community structure found in real-world networks. To study node importance based on network flows from a mesoscopic perspective, we analytically derive a community-aware information-theoretic centrality score based on network flow and the coding principles behind the map equation: map equation centrality. Map equation centrality measures how much further we can compress the network's modular description by not coding for random walker transitions to the respective node, using an adapted coding scheme and determining node importance from a network flow-based point of view. The information-theoretic centrality measure can be determined from a node's local network context alone because changes to the coding scheme only affect other nodes in the same module. Map equation centrality is agnostic to the chosen network flow model and allows researchers to select the model that best reflects the dynamics of the process under study. Applied to synthetic networks, we highlight how our approach enables a more fine-grained differentiation between nodes than node-local or network-global measures. Predicting influential nodes for two different dynamical processes on real-world networks with traditional and other community-aware centrality measures, we find that activating nodes based on map equation centrality scores tends to create the largest cascades in a linear threshold model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源