论文标题

推荐系统加快量子控制优化

Recommender System Expedited Quantum Control Optimization

论文作者

Batra, Priya, Ram, M. Harshanth, Mahesh, T. S.

论文摘要

量子控制优化算法通常用于生成最佳量子门或有效的量子状态传输。但是,设计有效的优化算法有两个主要挑战,即克服对本地Optima的敏感性并提高计算速度。可以通过设计混合算法(例如梯度和模拟退火方法的组合)来应对以前的挑战。在这里,我们提出并证明了机器学习方法的使用,特别是推荐系统(RS),以应对提高计算效率的后一种挑战。我们首先描述了设置涉及梯度或门忠诚度的评级矩阵的方法。然后,我们确定RS可以快速,准确地预测稀疏额定矩阵的元素。使用这种方法,我们加快了基于梯度上升的量子控制优化的优化,即葡萄,并证明了多达8 QUAB的速度更快的性能。最后,我们描述并实施了混合算法(即Sagrape)的计算速度的提高。

Quantum control optimization algorithms are routinely used to generate optimal quantum gates or efficient quantum state transfers. However, there are two main challenges in designing efficient optimization algorithms, namely overcoming the sensitivity to local optima and improving the computational speed. The former challenge can be dealt with by designing hybrid algorithms, such as a combination of gradient and simulated annealing methods. Here, we propose and demonstrate the use of a machine learning method, specifically the recommender system (RS), to deal with the latter challenge of enhancing computational efficiency. We first describe ways to set up a rating matrix involving gradients or gate fidelities. We then establish that RS can rapidly and accurately predict elements of a sparse rating matrix. Using this approach, we expedite a gradient ascent based quantum control optimization, namely GRAPE and demonstrate the faster performance for up to 8 qubits. Finally, we describe and implement the enhancement of the computational speed of a hybrid algorithm, namely SAGRAPE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源