论文标题

TERA-IOT网络中资源分配的运输能力优化

Transport Capacity Optimization for Resource Allocation in Tera-IoT Networks

论文作者

Jeong, Cheol, Chun, Chang-Jae, Shin, Won-Yong, Kim, Il-Min

论文摘要

我们提出了一种新的自适应资源优化策略,该策略共同分配了子窗口并将功率传输到多设备Terahertz(THZ)物联网(TERA-IOT)网络中。与主要关注总和距离的先前研究不同,我们将速率和传输距离纳入了问题制定的目标函数,以及THZ带的关键特征,包括扩散和分子吸收损失。更具体地说,作为TERA-IOT网络的性能指标,我们采用了运输能力(TC),该运输能力定义为所有用户的费率距离产品的总和。该指标已在大型临时网络中广泛采用,也适合评估各种TERA-IOT应用程序的性能。然后,我们提出一个旨在最大化TC的优化问题。此外,由于THZ频段的高路径损失,传输距离的重要性非常有限,我们的优化问题扩展到了分配子窗口,传输功率和传输距离的情况。我们通过有效的两阶段资源分配策略来展示如何解决问题。我们通过对大规模TERA-IOT网络的各种环境设置进行密集的数值评估来证明自适应解决方案优于基准方法。

We present a new adaptive resource optimization strategy that jointly allocates the subwindow and transmit power in multi-device terahertz (THz) band Internet of Things (Tera-IoT) networks. Unlike the prior studies focusing mostly on maximizing the sum distance, we incorporate both rate and transmission distance into the objective function of our problem formulation with key features of THz bands, including the spreading and molecular absorption losses. More specifically, as a performance metric of Tera-IoT networks, we adopt the transport capacity (TC), which is defined as the sum of the rate-distance products over all users. This metric has been widely adopted in large-scale ad hoc networks, and would also be appropriate for evaluating the performance of various Tera-IoT applications. We then formulate an optimization problem that aims at maximizing the TC. Moreover, motivated by the importance of the transmission distance that is very limited due to the high path loss in THz bands, our optimization problem is extended to the case of allocating the subwindow, transmit power, and transmission distance. We show how to solve our problems via an effective two-stage resource allocation strategy. We demonstrate the superiority of our adaptive solution over benchmark methods via intensive numerical evaluations for various environmental setups of large-scale Tera-IoT networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源