论文标题

2D+3D面部表达识别通过嵌入式张量歧管正则化

2D+3D facial expression recognition via embedded tensor manifold regularization

论文作者

Fu, Yunfang, Ruan, Qiuqi, Luo, Ziyan, An, Gaoyun, Jin, Yi, Wan, Jun

论文摘要

在本文中,提出了一种通过嵌入式张量歧管正则化的新方法,用于2D+3D面部表达识别(FERETMR)。首先,由2D脸部图像和3D脸型模型构建3D张量,以保持结构信息和相关性。在降低维度的低维张量空间中,3D张量样品的局部结构(几何信息)要维持核心张量的$ \ ell_0 $ norm和嵌入在核心张力符上的张量正规化方案的局部结构(几何信息),这是通过对生成的较低的Tucker tucker demostors ot the Core张紧器的生成。结果,获得的因子矩阵将用于面部表达分类预测。为了使产生的张量优化更加可行,$ \ ell_1 $ -norm替代物用于放松$ \ ell_0 $ -norm,因此,由于$ \ ell_1 $ -norm和OrthogoNal bongraintss of Orthogonal decompomportss the Orthogonal decompomptsitions $ \ ell_1 $ -norm和Orthogonal bongeraints,因此所得的张量优化问题具有非木齿目标功能。为了有效地解决此张量优化问题,我们根据固定点建立了一阶最佳条件,然后设计具有收敛分析和计算复杂性的块坐标下降(BCD)算法。 BU-3DFE数据库和Bosphorus数据库的数值结果证明了我们提出的方法的有效性。

In this paper, a novel approach via embedded tensor manifold regularization for 2D+3D facial expression recognition (FERETMR) is proposed. Firstly, 3D tensors are constructed from 2D face images and 3D face shape models to keep the structural information and correlations. To maintain the local structure (geometric information) of 3D tensor samples in the low-dimensional tensors space during the dimensionality reduction, the $\ell_0$-norm of the core tensors and a tensor manifold regularization scheme embedded on core tensors are adopted via a low-rank truncated Tucker decomposition on the generated tensors. As a result, the obtained factor matrices will be used for facial expression classification prediction. To make the resulting tensor optimization more tractable, $\ell_1$-norm surrogate is employed to relax $\ell_0$-norm and hence the resulting tensor optimization problem has a nonsmooth objective function due to the $\ell_1$-norm and orthogonal constraints from the orthogonal Tucker decomposition. To efficiently tackle this tensor optimization problem, we establish the first-order optimality condition in terms of stationary points, and then design a block coordinate descent (BCD) algorithm with convergence analysis and the computational complexity. Numerical results on BU-3DFE database and Bosphorus databases demonstrate the effectiveness of our proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源