论文标题

家谱通过脊柱分解的收敛,并应用于种群遗传学

Convergence of genealogies through spinal decomposition with an application to population genetics

论文作者

Foutel-Rodier, Félix, Schertzer, Emmanuel

论文摘要

考虑在某些一般类型空间中具有值的分支马尔可夫进程。以生存为条件,直到一代$ n $,现存人群的家谱定义了一个随机标记的度量空间,其中个体以其类型为标志,成对距离的时间是根据最新共同祖先的时间来衡量的。在当前的手稿中,我们设计了一种一般的时刻方法,以证明当$ n \ to \ infty $时,在Gromov-Weak拓扑中证明了这种家谱的融合。 从非正式的情况下,通过观察$ k $的个人的家谱在大小上以$ n $ $ n $的$ k $ th factorial时刻偏向人口后,可以随机选择$ k $ k $的个人的订单时刻。我们表明,采样的家谱可以用原始分支过程的$ k $旋转分解来表达,并且收敛降低了基础$ k $ spines的收敛性。 为了说明我们的框架,我们分析了通过重组的双子赖特 - 法派模型的分支近似的大型行为。该模型具有一些有趣的数学特征。它从超临界状态开始,但自然驱动到批判性。我们表明,限制行为既具有关键和超临界特征。

Consider a branching Markov process with values in some general type space. Conditional on survival up to generation $N$, the genealogy of the extant population defines a random marked metric measure space, where individuals are marked by their type and pairwise distances are measured by the time to the most recent common ancestor. In the present manuscript, we devise a general method of moments to prove convergence of such genealogies in the Gromov-weak topology when $N \to \infty$. Informally, the moment of order $k$ of the population is obtained by observing the genealogy of $k$ individuals chosen uniformly at random after size-biasing the population at time $N$ by its $k$-th factorial moment. We show that the sampled genealogy can be expressed in terms of a $k$-spine decomposition of the original branching process, and that convergence reduces to the convergence of the underlying $k$-spines. As an illustration of our framework, we analyse the large-time behavior of a branching approximation of the biparental Wright-Fisher model with recombination. The model exhibits some interesting mathematical features. It starts in a supercritical state but is naturally driven to criticality. We show that the limiting behavior exhibits both critical and supercritical characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源