论文标题

通过序列产生的无模式依赖性解析

Schema-Free Dependency Parsing via Sequence Generation

论文作者

Lin, Boda, Yao, Zijun, Shi, Jiaxin, Cao, Shulin, Tang, Binghao, Li, Si, Luo, Yong, Li, Juanzi, Hou, Lei

论文摘要

依赖性解析旨在提取句子的句法依赖性结构或语义依赖性结构。现有方法遭受缺乏普遍性或高度依赖辅助解码器的缺点。为了解决这些缺点,我们建议通过仅利用没有任何辅助结构或解析算法的预先训练的语言模型(PLM)来实现通过序列生成(SG)DPSG实现通用和无模式的依赖解析(DP)。我们首先探讨了将解析结构转换为序列的不同序列化设计策略。然后,我们设计依赖性单元,并将这些单元连接到DPSG的序列中。由于序列生成的高灵活性,我们的DPSG可以使用单个模型同时实现句法DP和语义DP。通过将前缀与序列指示特定模式,我们的DPSG甚至可以完成多schemata解析。我们DPSG的有效性通过广泛使用的DP基准(即PTB,Codt,SDP15和Semeval16)的实验证明。 DPSG通过在CoDT和Semeval16中的所有基准,甚至最先进的(SOTA)性能上使用第一层方法获得了可比的结果。本文表明,我们的DPSG有可能成为新的解析范式。我们将在接受后发布我们的代码。

Dependency parsing aims to extract syntactic dependency structure or semantic dependency structure for sentences. Existing methods suffer the drawbacks of lacking universality or highly relying on the auxiliary decoder. To remedy these drawbacks, we propose to achieve universal and schema-free Dependency Parsing (DP) via Sequence Generation (SG) DPSG by utilizing only the pre-trained language model (PLM) without any auxiliary structures or parsing algorithms. We first explore different serialization designing strategies for converting parsing structures into sequences. Then we design dependency units and concatenate these units into the sequence for DPSG. Thanks to the high flexibility of the sequence generation, our DPSG can achieve both syntactic DP and semantic DP using a single model. By concatenating the prefix to indicate the specific schema with the sequence, our DPSG can even accomplish multi-schemata parsing. The effectiveness of our DPSG is demonstrated by the experiments on widely used DP benchmarks, i.e., PTB, CODT, SDP15, and SemEval16. DPSG achieves comparable results with the first-tier methods on all the benchmarks and even the state-of-the-art (SOTA) performance in CODT and SemEval16. This paper demonstrates our DPSG has the potential to be a new parsing paradigm. We will release our codes upon acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源