论文标题
evbattery:用于电池健康和容量估计的大型电动汽车数据集
EVBattery: A Large-Scale Electric Vehicle Dataset for Battery Health and Capacity Estimation
论文作者
论文摘要
电动汽车(EV)在减少碳排放方面起着重要作用。随着电动汽车采用的加速,由电动汽车电池引起的安全问题已成为一个重要的研究主题。为了基准和开发针对此任务的数据驱动方法,我们引入了一个大型而全面的电动电池数据集。我们的数据集包括从几年来从三个制造商那里收集的数百辆电动汽车收取的收费记录。我们的数据集是现实电池数据上的第一个大规模公共数据集,因为现有数据仅包括几辆车辆或在实验室环境中收集。同时,我们的数据集具有两种类型的标签,对应于两个关键任务 - 电池健康估计和电池容量估计。除了展示如何将现有的深度学习算法应用于此任务外,我们还开发了一种利用电池系统数据结构的算法。我们的算法取得了更好的结果,并表明一种自定义方法可以改善模型性能。我们希望该公共数据集为研究人员,政策制定者和行业专业人员提供宝贵的资源,以更好地了解电动电动电动电池老化的动态,并支持向可持续运输系统的过渡。
Electric vehicles (EVs) play an important role in reducing carbon emissions. As EV adoption accelerates, safety issues caused by EV batteries have become an important research topic. In order to benchmark and develop data-driven methods for this task, we introduce a large and comprehensive dataset of EV batteries. Our dataset includes charging records collected from hundreds of EVs from three manufacturers over several years. Our dataset is the first large-scale public dataset on real-world battery data, as existing data either include only several vehicles or is collected in the lab environment. Meanwhile, our dataset features two types of labels, corresponding to two key tasks - battery health estimation and battery capacity estimation. In addition to demonstrating how existing deep learning algorithms can be applied to this task, we further develop an algorithm that exploits the data structure of battery systems. Our algorithm achieves better results and shows that a customized method can improve model performances. We hope that this public dataset provides valuable resources for researchers, policymakers, and industry professionals to better understand the dynamics of EV battery aging and support the transition toward a sustainable transportation system.