论文标题

通过梯度下降改善小组测试

Improving Group Testing via Gradient Descent

论文作者

Srinivasavaradhan, Sundara Rajan, Nikolopoulos, Pavlos, Fragouli, Christina, Diggavi, Suhas

论文摘要

我们研究了与非相同,独立先验的小组测试问题。到目前为止,文献中提出的汇总策略采用以下方法:提出了手工制作的测试设计以及解码策略,并提供了有关多少测试的保证,以便确定人群中的所有感染。在本文中,我们采用了一种不同但更实用的方法:我们修复了解码器和测试的数量,并且我们问,鉴于这些,人们可以使用什么?我们探索了确定的非缺陷(DND)解码器的问题。我们制定一个(非凸)优化问题,其中目标函数是特定设计的预期错误数量。我们通过梯度下降找到近似的解决方案,我们通过知情初始化进一步优化。我们通过模拟说明,我们的方法可以比传统方法实现重大的绩效改善。

We study the problem of group testing with non-identical, independent priors. So far, the pooling strategies that have been proposed in the literature take the following approach: a hand-crafted test design along with a decoding strategy is proposed, and guarantees are provided on how many tests are sufficient in order to identify all infections in a population. In this paper, we take a different, yet perhaps more practical, approach: we fix the decoder and the number of tests, and we ask, given these, what is the best test design one could use? We explore this question for the Definite Non-Defectives (DND) decoder. We formulate a (non-convex) optimization problem, where the objective function is the expected number of errors for a particular design. We find approximate solutions via gradient descent, which we further optimize with informed initialization. We illustrate through simulations that our method can achieve significant performance improvement over traditional approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源