论文标题

用于系统分析现代OMICS数据集的因果分子网络系统分析的发现方法

Discovery methods for systematic analysis of causal molecular networks in modern omics datasets

论文作者

Kelly, Jack, Berzuini, Carlo, Keavney, Bernard, Tomaszewski, Maciej, Guo, Hui

论文摘要

随着多摩管数据集的可用性和大小的增加和大小,研究分子表型之间的休闲关系已成为探索潜在的生物学和遗传学的重要方面。本文旨在介绍和审查过去十年中开发的大规模因果分子网络的可用方法。现有方法具有自己的优势和局限性,因此没有一种最佳方法,而是取决于研究人员的酌处权。这篇综述还旨在讨论当前对这些网络生物学解释的局限性,以及要考虑未来对分子网络的研究的重要因素。

With the increasing availability and size of multi-omics datasets, investigating the casual relationships between molecular phenotypes has become an important aspect of exploring underlying biology and genetics. This paper aims to introduce and review the available methods for building large-scale causal molecular networks that have been developed in the past decade. Existing methods have their own strengths and limitations so there is no one best approach, and it is instead down to the discretion of the researcher. This review also aims to discuss some of the current limitations to biological interpretation of these networks, and important factors to consider for future studies on molecular networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源