论文标题

图像和视频超分辨率的深网

Deep Networks for Image and Video Super-Resolution

论文作者

Purohit, Kuldeep, Mandal, Srimanta, Rajagopalan, A. N.

论文摘要

卷积神经网络中间层中梯度传播的效率对于超分辨率任务至关重要。为此,我们为单个图像超分辨率(SISR)提出了一个深层体系结构,该体系结构是使用有效的卷积单元构建的,我们称为混合密度连接块(MDCB)。 MDCB的设计结合了残留和密集连接策略的优势,同时克服了局限性。为了实现多种因素的超级分辨率,我们提出了一个比例性转变框架,该框架将用于较低因素的较低尺度因素所学的过滤器重新递归。这会提高性能并促进更高因素的参数效率。我们使用不同的损失配置来训练两个版本的网络,以增强互补的图像质量。我们进一步采用我们的网络进行视频超分辨率任务,我们的网络学会从多个帧中汇总信息并保持时空的一致性。拟议的网络对图像和视频超分辨率基准的最新技术进行了定性和定量改进。

Efficiency of gradient propagation in intermediate layers of convolutional neural networks is of key importance for super-resolution task. To this end, we propose a deep architecture for single image super-resolution (SISR), which is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB). The design of MDCB combines the strengths of both residual and dense connection strategies, while overcoming their limitations. To enable super-resolution for multiple factors, we propose a scale-recurrent framework which reutilizes the filters learnt for lower scale factors recursively for higher factors. This leads to improved performance and promotes parametric efficiency for higher factors. We train two versions of our network to enhance complementary image qualities using different loss configurations. We further employ our network for video super-resolution task, where our network learns to aggregate information from multiple frames and maintain spatio-temporal consistency. The proposed networks lead to qualitative and quantitative improvements over state-of-the-art techniques on image and video super-resolution benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源