论文标题

使用超优化的张量网络和第一原理电子结构来模拟巨型{Mn84}圆环的实验性能

Using hyper-optimized tensor networks and first-principles electronic structure to simulate experimental properties of the giant {Mn84} torus

论文作者

Chen, Dian-Teng, Helms, Phillip, Hale, Ashlyn R., Lee, Minseong, Li, Chenghan, Gray, Johnnie, Christou, George, Zapf, Vivien S., Chan, Garnet Kin-Lic, Cheng, Hai-Ping

论文摘要

单分子磁铁{MN84}由于其高核性而是对理论的挑战。在我们先前的工作以表征该磁体频谱的结构的基础上,我们直接计算了两个实验可访问的可观察物,使用参数无参数理论,最多75 t的场依赖性磁化和温度依赖的热容量。特别是,我们使用第一原理计算来得出短期和远程交换相互作用,同时我们计算所有84 Mn $ s = 2 $ spins的所得经典Potts和Ising Spin模型的确切分区功能,以获得可观察到的物品。后一种计算之所以可能是因为使用了超优化的张量网络收缩,这是从最近开发的技术中借用来模拟量子至上电路的。我们还合成磁铁并测量其热容量和磁性依赖性磁化。我们观察到理论与实验之间的良好定性一致性,确定了这两者的热容量的异常峰以及磁化强度的平原。我们的工作还确定了大磁铁中当前理论建模的某些局限性,例如对小型,远程交换耦合的敏感性。

The single-molecule magnet {Mn84} is a challenge to theory due to its high nuclearity. Building on our prior work which characterized the structure of the spectrum of this magnet, we directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter free theory. In particular, we use first principles calculations to derive short- and long-range exchange interactions, while we compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn $S=2$ spins to obtain the observables. The latter computation is possible because of a simulation methodology that uses hyper-optimized tensor network contraction, borrowing from recent techniques developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and field-dependent magnetization. We observe good qualitative agreement between theory and experiment, identifying an unusual peak in the heat capacity in both, as well as a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as the sensitivity to small, long-range, exchange couplings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源