论文标题
从无标记的数据中的功能增强,用于无监督的域名适应
Shuffle Augmentation of Features from Unlabeled Data for Unsupervised Domain Adaptation
论文作者
论文摘要
无监督的域适应性(UDA)是转移学习的一个分支,其中无法获得目标样本的标签,在近年来,在经过对抗训练的模型的帮助下,已广泛研究和开发。尽管现有的UDA算法能够指导神经网络提取可转移和歧视性特征,但分类器仅在标记的源数据的监督下进行培训。鉴于源域和目标域之间不可避免的差异,分类器几乎无法意识到目标分类边界。在本文中,提出了一种新型UDA框架的功能增强功能(SAF),以通过向分类器提供目标特征表示的监督信号来解决该问题。 SAF从目标样本中学习,自适应地提取级别感知的目标特征,并隐式指导分类器寻找全面的类边界。通过广泛的实验证明,可以将SAF模块集成到任何现有的对抗性UDA模型中,以提高性能。
Unsupervised Domain Adaptation (UDA), a branch of transfer learning where labels for target samples are unavailable, has been widely researched and developed in recent years with the help of adversarially trained models. Although existing UDA algorithms are able to guide neural networks to extract transferable and discriminative features, classifiers are merely trained under the supervision of labeled source data. Given the inevitable discrepancy between source and target domains, the classifiers can hardly be aware of the target classification boundaries. In this paper, Shuffle Augmentation of Features (SAF), a novel UDA framework, is proposed to address the problem by providing the classifier with supervisory signals from target feature representations. SAF learns from the target samples, adaptively distills class-aware target features, and implicitly guides the classifier to find comprehensive class borders. Demonstrated by extensive experiments, the SAF module can be integrated into any existing adversarial UDA models to achieve performance improvements.