论文标题

学习近端操作员发现多个Optima

Learning Proximal Operators to Discover Multiple Optima

论文作者

Li, Lingxiao, Aigerman, Noam, Kim, Vladimir G., Li, Jiajin, Greenewald, Kristjan, Yurochkin, Mikhail, Solomon, Justin

论文摘要

找到非凸优化问题的多个解决方案是一项无处不在但具有挑战性的任务。大多数过去的算法要么从多个随机初始猜测中采用单分解优化方法,要么使用临时启发式方法在发现解决方案附近进行搜索。我们提出了一种学习培训问题家族的近端操作员的端到端方法,以便可以通过迭代学习的操作员来快速从初始猜测中获得多个局部最小值,从而模拟具有快速收敛的近端点算法。可以进一步概括学到的近端运算符,以在测试时间为看不见的问题恢复多个Optima,从而实现了诸如对象检测的应用程序。我们配方中的关键成分是近端正规化术语,它提高了我们的训练损失的凸度:通过应用最新的理论结果,我们表明,对于Lipschitz梯度,对于弱晶格目标,培训近端操作员的近端操作员以实用程度的过度参数化而在全球范围内收敛。我们进一步提出了多溶液优化的详尽基准,以证明我们方法的有效性。

Finding multiple solutions of non-convex optimization problems is a ubiquitous yet challenging task. Most past algorithms either apply single-solution optimization methods from multiple random initial guesses or search in the vicinity of found solutions using ad hoc heuristics. We present an end-to-end method to learn the proximal operator of a family of training problems so that multiple local minima can be quickly obtained from initial guesses by iterating the learned operator, emulating the proximal-point algorithm that has fast convergence. The learned proximal operator can be further generalized to recover multiple optima for unseen problems at test time, enabling applications such as object detection. The key ingredient in our formulation is a proximal regularization term, which elevates the convexity of our training loss: by applying recent theoretical results, we show that for weakly-convex objectives with Lipschitz gradients, training of the proximal operator converges globally with a practical degree of over-parameterization. We further present an exhaustive benchmark for multi-solution optimization to demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源