论文标题

周期图的深层生成模型

Deep Generative Model for Periodic Graphs

论文作者

Wang, Shiyu, Guo, Xiaojie, Zhao, Liang

论文摘要

周期性图是由重复的局部结构(例如晶体网和多边形网格)组成的图。它们的生成建模在现实世界中具有巨大的潜力,例如材料设计和图形合成。经典模型要么依赖于特定领域的预定义的生成原理(例如,在水晶净设计中),要么遵循基于几何的规定规则。最近,深层生成模型在自动生成一般图表方面表现出了巨大的希望。但是,由于1)维持图周期性的几个关键挑战,因此尚未很好地探索它们的周期性图表; 2)解开本地和全球模式; 3)学习重复模式的效率。为了解决这些问题,本文提出了定期绘制的分解变化自动编码器(PGD-VAE),这是一种新的深层生成模型,用于周期性图形,可以自动学习,分解并生成本地和全局图模式。具体而言,我们开发了一个新的周期图编码器,该图形编码器由全球模式编码器和本地模式编码器组成,该编码器可确保将表示形式分解为全局和本地语义。然后,我们提出了一个新的周期图解码器,该解码器由局部结构解码器,邻域解码器和全球结构解码器以及其输出的组装程序组成,以保证周期性。此外,我们设计了一个新的模型学习目标,该目标有助于确保具有相同本地结构的图形的局部语义表示不变性。已经进行了全面的实验评估,以证明该方法的有效性。建议的PGD-VAE守则可在https://github.com/shi-yu-wang/pgd-vae上进行可用。

Periodic graphs are graphs consisting of repetitive local structures, such as crystal nets and polygon mesh. Their generative modeling has great potential in real-world applications such as material design and graphics synthesis. Classical models either rely on domain-specific predefined generation principles (e.g., in crystal net design), or follow geometry-based prescribed rules. Recently, deep generative models has shown great promise in automatically generating general graphs. However, their advancement into periodic graphs have not been well explored due to several key challenges in 1) maintaining graph periodicity; 2) disentangling local and global patterns; and 3) efficiency in learning repetitive patterns. To address them, this paper proposes Periodical-Graph Disentangled Variational Auto-encoder (PGD-VAE), a new deep generative models for periodic graphs that can automatically learn, disentangle, and generate local and global graph patterns. Specifically, we develop a new periodic graph encoder consisting of global-pattern encoder and local-pattern encoder that ensures to disentangle the representation into global and local semantics. We then propose a new periodic graph decoder consisting of local structure decoder, neighborhood decoder, and global structure decoder, as well as the assembler of their outputs that guarantees periodicity. Moreover, we design a new model learning objective that helps ensure the invariance of local-semantic representations for the graphs with the same local structure. Comprehensive experimental evaluations have been conducted to demonstrate the effectiveness of the proposed method. The code of proposed PGD-VAE is availabe at https://github.com/shi-yu-wang/PGD-VAE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源