论文标题

磷酸二维GESE的激活,以通过RU的状态过滤有效地降低电催化氮

Activation of Phosphorene-like Two-dimensional GeSe for Efficient Electrocatalytic Nitrogen Reduction via States Filtering of Ru

论文作者

Shu, Zheng, Cai, Yongqing

论文摘要

将氮(N2)转换为氨(NH3)的氮还原反应(NRR)通常需要恶劣的条件才能打破结合的氮键。在此,通过第一原理计算,我们揭示了可以通过将原子催化剂锚定在磷酸鞘酚(GESE)的磷光样冰球表面上的原子催化剂来获得。通过检查在GESE上装饰的单个和双原子(B,Fe,W,Mo和Ru),我们发现其波纹结构允许沉积物种与GESE之间的亲密接触,从而显着促进了状态杂交。在各种原子催化剂中,我们预测Ru二聚体装饰的GESE单层(RU2@GESE)具有较高的N2固定和还原活性。通过检查三个NRR途径(远端,交替和酶促),远端和酶促途径既是热力学上的偏好,最大Gibbs自由能变化(ΔGMAX)分别为0.25和0.26 eV。这样的优质活性可以归因于Ru二聚体过滤的GESE态,从而导致吸附的N2键的有效激活。作为有效的近红外GESE吸收器,RU介导的GESE-RU-N2复合物的杂交实现了一个间隙状态,可以进一步拓宽吸收窗口,从而渲染宽带太阳能吸收和可能的光催化。

Nitrogen reduction reaction (NRR) which converts nitrogen (N2) to ammonia (NH3) normally requires harsh conditions to break the bound nitrogen bond. Herein, via first-principles calculation we reveal that a superior NRR catalytic activity could be obtained through anchoring atomic catalyst above a phosphorene-like puckering surface of germanium selenide (GeSe). Through examining the single- and double- atoms (B, Fe, W, Mo and Ru) decorated on GeSe, we find that its rippled structure allows an intimate contact between the deposited species and the GeSe which significantly promotes the states hybridization. Amongst the various atomic catalyst, we predict that the Ru dimer decorated GeSe monolayer (Ru2@GeSe) has superior catalytic activity for the N2 fixation and reduction. Through examining the three NRR pathways (distal, alternating and enzymatic), the distal and enzymatic pathway is both the thermodynamically favorable with the maximum Gibbs free energy change (ΔGMAX) of 0.25 and 0.26 eV, respectively. Such a superior activity could be attributed to the filtered states of GeSe by Ru dimer which leads to the effective activation of the adsorbed N2 bond. As an efficient near-infrared absorber of GeSe, the Ru mediated hybridization of GeSe-Ru-N2 complex enables an in-gap state which further broadens the absorbing window, rendering for a broadband solar absorption and possible photocatalysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源