论文标题
使用标签平滑校准组织病理学图像分类器
Calibrating Histopathology Image Classifiers using Label Smoothing
论文作者
论文摘要
组织病理学图像的分类从根本上不同于传统图像分类任务,因为组织病理学图像自然表现出一系列诊断特征,从而导致了各种注释者一致性水平。但是,在训练组织病理学图像分类器时,通常分配了高注释分歧的示例,或者完全被分配给多数标签。这种广泛的实践通常会产生分类器,这些分类器不考虑难度,并且模型校准较差。在本文中,我们问:我们是否可以通过对示例难度的感应偏见来赋予组织病理学图像分类器来改善模型校准? 我们提出了几种利用人均注释一致性的标签平滑方法。尽管我们的方法很简单,但我们发现它们可以大大改善模型校准,同时(甚至提高)精度。对于结直肠息肉分类,这是胃肠道病理学中常见但又具有挑战性的任务,我们发现我们提出的一致性标签平滑方法将校准误差降低了几乎70%。此外,我们发现,使用模型置信作为注释者一致性的代理也提高了校准和准确性,这表明没有多个注释者的数据集仍然可以通过我们提出的置信度吸引的标签平滑方法从我们建议的标签平滑方法中受益。 鉴于校准的重要性(尤其是在组织病理学图像分析中),我们提出的技术的改进值得在其他组织病理学图像分类任务中进一步探索和潜在实现。
The classification of histopathology images fundamentally differs from traditional image classification tasks because histopathology images naturally exhibit a range of diagnostic features, resulting in a diverse range of annotator agreement levels. However, examples with high annotator disagreement are often either assigned the majority label or discarded entirely when training histopathology image classifiers. This widespread practice often yields classifiers that do not account for example difficulty and exhibit poor model calibration. In this paper, we ask: can we improve model calibration by endowing histopathology image classifiers with inductive biases about example difficulty? We propose several label smoothing methods that utilize per-image annotator agreement. Though our methods are simple, we find that they substantially improve model calibration, while maintaining (or even improving) accuracy. For colorectal polyp classification, a common yet challenging task in gastrointestinal pathology, we find that our proposed agreement-aware label smoothing methods reduce calibration error by almost 70%. Moreover, we find that using model confidence as a proxy for annotator agreement also improves calibration and accuracy, suggesting that datasets without multiple annotators can still benefit from our proposed label smoothing methods via our proposed confidence-aware label smoothing methods. Given the importance of calibration (especially in histopathology image analysis), the improvements from our proposed techniques merit further exploration and potential implementation in other histopathology image classification tasks.