论文标题

六边形和三角形的斜纹砖

Hexagonal and trigonal quasiperiodic tilings

论文作者

Coates, Sam, Koga, Akihisa, Matsubara, Toranosuke, Tamura, Ryuji, Sharma, Hem Raj, McGrath, Ronan, Lifshitz, Ron

论文摘要

探索具有在周期性和上周期性晶体中都可以找到的对称性的非微级准晶体,通常会在模型中对易于治疗的多个远距离顺序的物理性质提供新的见解。由实验系统的流行率,表现出具有六角形和三角形对称性的大道远距离顺序,我们引入了具有这样的对称性的二维准二级式瓷砖的通用两参数家族。我们专注于三角形和六角形斐波那契的特殊情况,或金色的瓷砖,类似于研究经过良好的方形斐波那契瓷砖。我们首先使用De Bruijn的双网格方法的广义版生成瓷砖。然后,我们根据六个尺寸超空间的高素质晶格的预测讨论他们的解释。最后,我们通过专注于家庭的两个六角形成员,并更仔细地研究了他们的一些财产,同时为其一代人提供了一套替代规则。

Exploring nonminimal-rank quasicrystals, which have symmetries that can be found in both periodic and aperiodic crystals, often provides new insight into the physical nature of aperiodic long-range order in models that are easier to treat. Motivated by the prevalence of experimental systems exhibiting aperiodic long-range order with hexagonal and trigonal symmetry, we introduce a generic two-parameter family of 2-dimensional quasiperiodic tilings with such symmetries. We focus on the special case of trigonal and hexagonal Fibonacci, or golden-mean, tilings, analogous to the well studied square Fibonacci tiling. We first generate the tilings using a generalized version of de Bruijn's dual grid method. We then discuss their interpretation in terms of projections of a hypercubic lattice from six dimensional superspace. We conclude by concentrating on two of the hexagonal members of the family, and examining a few of their properties more closely, while providing a set of substitution rules for their generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源