论文标题
延迟敏感应用程序的边缘计算中的资源供应
Resource Provisioning in Edge Computing for Latency Sensitive Applications
论文作者
论文摘要
低延迟的物联网应用程序,例如自动驾驶汽车,增强/虚拟现实设备和安全应用程序,需要高度计算资源才能即时做出决策。但是,由于经验丰富的延迟,这类应用程序无法容忍在云基础架构上处理其任务。因此,引入边缘计算以通过将任务处理更接近网络边缘的用户来启用低延迟。网络的边缘的特征是边缘设备形成它的异质性。因此,设计新颖的解决方案至关重要,这些解决方案考虑到每个边缘设备的不同物理资源。在本文中,我们提出了一个资源表示方案,允许每个Edge设备通过移动边缘计算应用程序编程编程界面将其资源信息公开给边缘节点的主管,由欧洲电信标准标准学院提出。每次需要资源分配时,有关边缘设备资源的信息都会暴露于EN的主管。为此,我们利用Lyapunov优化框架在边缘设备上动态分配资源。为了测试我们提出的模型,我们在测试台上进行了密集的理论和实验模拟,以验证拟议方案及其对不同系统参数的影响。模拟表明,我们提出的方法的表现优于其他基准方法,并提供低延迟和最佳资源消耗。
Low-Latency IoT applications such as autonomous vehicles, augmented/virtual reality devices and security applications require high computation resources to make decisions on the fly. However, these kinds of applications cannot tolerate offloading their tasks to be processed on a cloud infrastructure due to the experienced latency. Therefore, edge computing is introduced to enable low latency by moving the tasks processing closer to the users at the edge of the network. The edge of the network is characterized by the heterogeneity of edge devices forming it; thus, it is crucial to devise novel solutions that take into account the different physical resources of each edge device. In this paper, we propose a resource representation scheme, allowing each edge device to expose its resource information to the supervisor of the edge node through the mobile edge computing application programming interfaces proposed by European Telecommunications Standards Institute. The information about the edge device resource is exposed to the supervisor of the EN each time a resource allocation is required. To this end, we leverage a Lyapunov optimization framework to dynamically allocate resources at the edge devices. To test our proposed model, we performed intensive theoretical and experimental simulations on a testbed to validate the proposed scheme and its impact on different system's parameters. The simulations have shown that our proposed approach outperforms other benchmark approaches and provides low latency and optimal resource consumption.