论文标题

使用图神经网络的软件验证算法选择算法

Algorithm Selection for Software Verification using Graph Neural Networks

论文作者

Leeson, Will, Dwyer, Matthew B

论文摘要

软件验证领域已经产生了各种算法技术,这些技术可以证明给定程序的各种属性。已经证明,在同一验证问题上,这些技术的性能最多可以变化4个数量级。即使对于验证专家,也很难确定哪种工具在给定的问题上会表现最佳。对于普通用户而言,确定其验证问题的最佳工具实际上是不可能的。 在这项工作中,我们提出了Graves,这是基于图神经网络(GNNS)的选择策略。 Graves生成了一个程序的图表表示,GNN可以从中预测验证者的分数,以表明其在程序上的性能。 我们评估了一组10个验证工具和8000多个验证问题的坟墓,发现它在验证算法选择中的最新算法提高了12%或8个百分点。此外,它能够比我们的测试集中的任何现有验证者多验证9%的问题。通过一项关于模型可解释性的定性研究,我们发现了有力的证据表明,坟墓的模型可以将其预测基于与算法技术独特特征有关的因素。

The field of software verification has produced a wide array of algorithmic techniques that can prove a variety of properties of a given program. It has been demonstrated that the performance of these techniques can vary up to 4 orders of magnitude on the same verification problem. Even for verification experts, it is difficult to decide which tool will perform best on a given problem. For general users, deciding the best tool for their verification problem is effectively impossible. In this work, we present Graves, a selection strategy based on graph neural networks (GNNs). Graves generates a graph representation of a program from which a GNN predicts a score for a verifier that indicates its performance on the program. We evaluate Graves on a set of 10 verification tools and over 8000 verification problems and find that it improves the state-of-the-art in verification algorithm selection by 12%, or 8 percentage points. Further, it is able to verify 9% more problems than any existing verifier on our test set. Through a qualitative study on model interpretability, we find strong evidence that the Graves' model learns to base its predictions on factors that relate to the unique features of the algorithmic techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源