论文标题

贝叶斯网络调解分析,应用于大脑功能连接

Bayesian network mediation analysis with application to brain functional connectome

论文作者

Zhao, Yize, Chen, Tianqi, Cai, Jiachen, Lichenstein, Sarah, Potenza, Marc, Yip, Sarah

论文摘要

脑功能连接组是沿功能网络互连的神经回路的收集,是最前沿的神经影像特性之一,并且有可能在暴露和结果之间的效应途径中发挥中介作用。尽管现有的调解分析方法能够提供对复杂过程的见解,但它们主要集中于单变量的调解人或调解器向量,而无需考虑网络变化的介体。为了填补方法论上的差距并完成这一令人兴奋的紧急应用,在本文中,我们提出了贝叶斯范式下的综合调解分析,其网络需要进行调解效果。为了参数化网络测量值,我们引入了具有未知块分配的单独指定的随机块模型,并且通过跨网络模块的连接权重引起的潜在网络介体自然桥接效应元素。为了识别真正活跃的介体组件,我们同时在网络中心跨越了特征选择。我们在估计不同的效应组件和选择主动中介网络结构方面显示了我们模型的优越性。作为该方法在网络神经科学中应用的实际说明,我们表征了由大脑功能子网络介导的治疗干预和阿片类药物的戒烟之间的关系。

Brain functional connectome, the collection of interconnected neural circuits along functional networks, is one of the most cutting edge neuroimaging traits, and has a potential to play a mediating role within the effect pathway between an exposure and an outcome. While existing mediation analytic approaches are capable of providing insight into complex processes, they mainly focus on a univariate mediator or mediator vector, without considering network-variate mediators. To fill the methodological gap and accomplish this exciting and urgent application, in the paper, we propose an integrative mediation analysis under a Bayesian paradigm with networks entailing the mediation effect. To parameterize the network measurements, we introduce individually specified stochastic block models with unknown block allocation, and naturally bridge effect elements through the latent network mediators induced by the connectivity weights across network modules. To enable the identification of truly active mediating components, we simultaneously impose a feature selection across network mediators. We show the superiority of our model in estimating different effect components and selecting active mediating network structures. As a practical illustration of this approach's application to network neuroscience, we characterize the relationship between a therapeutic intervention and opioid abstinence as mediated by brain functional sub-networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源