论文标题

扭曲的圆形波导阵列中的时空动力学

Spatiotemporal dynamics in a twisted, circular waveguide array

论文作者

Parker, Ross, Shen, Yannan, Aceves, Alejandro, Zweck, John

论文摘要

我们考虑非线性离散局部溶液的存在和光谱稳定性,代表在扭曲的多核光纤中传播的光脉冲。通过考虑均匀的$ n $波导,我们为解决方案得出了渐近表达式,其中大部分光强度被浓缩为局限于单个波导的孤子状脉冲。获得的领先顺序术语与数值计算的结果非常吻合。此外,就像在没有时间分散的模型中一样,当扭曲参数($ ϕ $)由$ ϕ =π/n $给出时,这些站立波会显示出光学抑制,其中单个波导保持未偏见,以达到领先顺序。光谱计算和数值进化实验表明,对于耦合参数的值小于临界值而言,这些常规溶液是稳定的,在这一点上,光谱不稳定性是由于内部特征值与原始特征值的碰撞所致。当$ ϕ =π/n $时,此临界值最大。

We consider the existence and spectral stability of nonlinear discrete localized solutions representing light pulses propagating in a twisted multi-core optical fiber. By considering an even number, $N$, of waveguides, we derive asymptotic expressions for solutions in which the bulk of the light intensity is concentrated as a soliton-like pulses confined to a single waveguide. The leading order terms obtained are in very good agreement with results of numerical computations. Furthermore, as in the model without temporal dispersion, when the twist parameter, $ϕ$, is given by $ϕ= π/N$, these standing waves exhibit optical suppression, in which a single waveguide remains unexcited, to leading order. Spectral computations and numerical evolution experiments suggest that these standing wave solutions are stable for values of the coupling parameter less than a critical value, at which point a spectral instability results from the collision of an internal eigenvalue with the eigenvalues at the origin. This critical value has a maximum when $ϕ= π/N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源