论文标题
在洛伦兹签名中Feynman积分的一般协变数学公式
On generally covariant mathematical formulation of Feynman integral in Lorentz signature
论文作者
论文摘要
人们普遍认为,Feynman积分是定义没有固定预先预性因果背景的非受驱动相互作用量子场理论(QFTS)的普遍协变量的最有前途的方法之一。最近的文献表明,如果时空度量未固定,例如因为要与其他字段一起进行量化,所以一个人可能无法避免考虑原始Lorentz签名中的Feynman积分,而不会旋转。然而,已知几种数学现象,在某个时候,它们是洛伦兹签名中Feynman积分数学上声音的定义。然而,已知Feynman的积分配方具有差异重新制定,被称为dyson-schwinger(MDS)方程,用于场相关器。在本文中,显示了MDS方程的特定表示形式可以施放到数学上严格定义的形式中:可以严格定义涉及的函数空间和运算符,并且可以建立它们的属性。因此,MDS方程可以用作Feynman积分的替代品,在数学上是在建设性QFT的数学声音中,任意签名,而没有固定的背景因果结构。还表明,即使在如此普遍的协变环境中,也有一种规范的方式来定义MDS方程的Wilsonian正则化。本文的主要结果是正规MDS解决方案空间是非空的,对于共同不变的Lagrangians而言。该定理还提供了一种迭代近似算法,用于获得正则化的MDS解决方案,并且在解决方案空间非空间时,可以保证是收敛的。该算法最终可以用作将Lorentz签名QFTS放到原始度量标志中的晶格上的方法。
It is widely accepted that the Feynman integral is one of the most promising methodologies for defining a generally covariant formulation of nonperturbative interacting quantum field theories (QFTs) without a fixed prearranged causal background. Recent literature suggests that if the spacetime metric is not fixed, e.g. because it is to be quantized along with the other fields, one may not be able to avoid considering the Feynman integral in the original Lorentz signature, without Wick rotation. Several mathematical phenomena are known, however, which are at some point showstoppers to a mathematically sound definition of Feynman integral in Lorentz signature. The Feynman integral formulation, however, is known to have a differential reformulation, called to be the master Dyson--Schwinger (MDS) equation for the field correlators. In this paper it is shown that a particular presentation of the MDS equation can be cast into a mathematically rigorously defined form: the involved function spaces and operators can be strictly defined and their properties can be established. Therefore, MDS equation can serve as a substitute for the Feynman integral, in a mathematically sound formulation of constructive QFT, in arbitrary signature, without a fixed background causal structure. It is also shown that even in such a generally covariant setting, there is a canonical way to define the Wilsonian regularization of the MDS equation. The main result of the paper is a necessary and sufficient condition for the regularized MDS solution space to be nonempty, for conformally invariant Lagrangians. This theorem also provides an iterative approximation algorithm for obtaining regularized MDS solutions, and is guaranteed to be convergent whenever the solution space is nonempty. The algorithm could eventually serve as a method for putting Lorentz signature QFTs onto lattice, in the original metric signature.