论文标题

使用复发性神经网络重建全息图像重建的几个射击转移学习

Few-shot Transfer Learning for Holographic Image Reconstruction using a Recurrent Neural Network

论文作者

Huang, Luzhe, Yang, Xilin, Liu, Tairan, Ozcan, Aydogan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Deep learning-based methods in computational microscopy have been shown to be powerful but in general face some challenges due to limited generalization to new types of samples and requirements for large and diverse training data. Here, we demonstrate a few-shot transfer learning method that helps a holographic image reconstruction deep neural network rapidly generalize to new types of samples using small datasets. We pre-trained a convolutional recurrent neural network on a large dataset with diverse types of samples, which serves as the backbone model. By fixing the recurrent blocks and transferring the rest of the convolutional blocks of the pre-trained model, we reduced the number of trainable parameters by ~90% compared with standard transfer learning, while achieving equivalent generalization. We validated the effectiveness of this approach by successfully generalizing to new types of samples using small holographic datasets for training, and achieved (i) ~2.5-fold convergence speed acceleration, (ii) ~20% computation time reduction per epoch, and (iii) improved reconstruction performance over baseline network models trained from scratch. This few-shot transfer learning approach can potentially be applied in other microscopic imaging methods, helping to generalize to new types of samples without the need for extensive training time and data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源