论文标题
部分可观测时空混沌系统的无模型预测
Unmixing based PAN guided fusion network for hyperspectral imagery
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The hyperspectral image (HSI) has been widely used in many applications due to its fruitful spectral information. However, the limitation of imaging sensors has reduced its spatial resolution that causes detail loss. One solution is to fuse the low spatial resolution hyperspectral image (LR-HSI) and the panchromatic image (PAN) with inverse features to get the high-resolution hyperspectral image (HR-HSI). Most of the existing fusion methods just focus on small fusion ratios like 4 or 6, which might be impractical for some large ratios' HSI and PAN image pairs. Moreover, the ill-posedness of restoring detail information in HSI with hundreds of bands from PAN image with only one band has not been solved effectively, especially under large fusion ratios. Therefore, a lightweight unmixing-based pan-guided fusion network (Pgnet) is proposed to mitigate this ill-posedness and improve the fusion performance significantly. Note that the fusion process of the proposed network is under the projected low-dimensional abundance subspace with an extremely large fusion ratio of 16. Furthermore, based on the linear and nonlinear relationships between the PAN intensity and abundance, an interpretable PAN detail inject network (PDIN) is designed to inject the PAN details into the abundance feature efficiently. Comprehensive experiments on simulated and real datasets demonstrate the superiority and generality of our method over several state-of-the-art (SOTA) methods qualitatively and quantitatively (The codes in pytorch and paddle versions and dataset could be available at https://github.com/rs-lsl/Pgnet). (This is a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block.)