论文标题

部分可观测时空混沌系统的无模型预测

Generation Matrix: An Embeddable Matrix Representation for Hierarchical Trees

论文作者

Cai, Jianping, Liu, Ximeng, Li, Jiayin, Zhang, Shuangyue

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Starting from the local structures to study hierarchical trees is a common research method. However, the cumbersome analysis and description make the naive method challenging to adapt to the increasingly complex hierarchical tree problems. To improve the efficiency of hierarchical tree research, we propose an embeddable matrix representation for hierarchical trees, called Generation Matrix. It can transform the abstract hierarchical tree into a concrete matrix representation and then take the hierarchical tree as a whole to study, which dramatically reduces the complexity of research. Mathematical analysis shows that Generation Matrix can simulate various recursive algorithms without accessing local structures and provides a variety of interpretable matrix operations to support the research of hierarchical trees. Applying Generation Matrix to differential privacy hierarchical tree release, we propose a Generation Matrix-based optimally consistent release algorithm (GMC). It provides an exceptionally concise process description so that we can describe its core steps as a simple matrix expression rather than multiple complicated recursive processes like existing algorithms. Our experiments show that GMC takes only a few seconds to complete a release for large-scale datasets with more than 10 million nodes. The calculation efficiency is increased by up to 100 times compared with the state-of-the-art schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源