论文标题

大型翻转图及其自动形态群体

Big Flip Graphs and Their Automorphism Groups

论文作者

Bar-Natan, Assaf, Goel, Advay, Halstead, Brendan, Hamrick, Paul, Shenoy, Sumedh, Verma, Rishi

论文摘要

在本文中,我们研究了无限型表面的映射类组与同时的翻转图之间的关系,这是Fossas和Parlier定义的无限型表面的翻转图的变体。我们表明,与有限型情况不同的是,扩展的映射类组是翻转图的自动形态组的适当亚组。这表明,伊万诺夫的metaconjjecture指出,与有限型表面相关的任何“足够富富的”对象都将扩展的映射类组作为其自动形态群,并未扩展到无限型表面的同时翻转图。

In this paper, we study the relationship between the mapping class group of an infinite-type surface and the simultaneous flip graph, a variant of the flip graph for infinite-type surfaces defined by Fossas and Parlier. We show that the extended mapping class group is isomorphic to a proper subgroup of the automorphism group of the flip graph, unlike in the finite-type case. This shows that Ivanov's metaconjecture, which states that any "sufficiently rich" object associated to a finite-type surface has the extended mapping class group as its automorphism group, does not extend to simultaneous flip graphs of infinite-type surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源