论文标题
非自主晶格正弦 - 戈登方程的属性:围绕损坏的立方体属性的一致性
Properties of the Non-Autonomous Lattice Sine-Gordon Equation: Consistency around a Broken Cube Property
论文作者
论文摘要
晶格正弦格式方程是$ {\ mathbb z}^2 $上的一个可集成的部分差方程,它以连续限制接近正弦 - 戈登方程。在本文中,我们表明,非自治晶格正弦 - 戈登方程在损坏的立方体属性及其自主版本周围具有一致性。此外,我们使用一致性属性构建了两个非自治案例的新宽松对。
The lattice sine-Gordon equation is an integrable partial difference equation on ${\mathbb Z}^2$, which approaches the sine-Gordon equation in a continuum limit. In this paper, we show that the non-autonomous lattice sine-Gordon equation has the consistency around a broken cube property as well as its autonomous version. Moreover, we construct two new Lax pairs of the non-autonomous case by using the consistency property.