论文标题
线条家庭的最低限度
Essential Minimum in Families of lines
论文作者
论文摘要
我们采用一般方法来生成上限和下限,以最低限度的最低限度。特别是,本文所示的结果适用于张Zagier高度的情况。此外,我们可以找到间隔,其中这些高度的图像是密集的。我们找到上限和密度间隔的主要工具是由于Burgos Gil,Philippon,Rivera-Letelier和Sombra而导致的经典Fekete-Szego定理的改进。
We apply general methods to generate upper and lower bounds for the essential minimum of a specific family of height functions. In particular, the results shown in this article apply to the case of the Zhang-Zagier height. Furthermore, we can find intervals, where the images of these heights are dense. Our main tool to find upper bounds and intervals of density, is a refinement of the classical Fekete-Szego theorem due to Burgos Gil, Philippon, Rivera-Letelier and Sombra.