论文标题

机器学习辅助材料特性设计

Machine learning-assisted design of material properties

论文作者

Kadulkar, Sanket, Sherman, Zachary M., Ganesan, Venkat, Truskett, Thomas M.

论文摘要

设计功能材料需要深入搜索多维空间,以获取产生理想材料特性的系统参数。对于常规参数扫描或试用和错误采样的情况是不切实际的,逆方法,将设计作为受约束优化问题的框架构成了一个有吸引力的选择。但是,即使有效的算法也需要在优化过程中多次对材料特性的时间和资源密集型表征,从而施加设计瓶颈。结合机器学习的方法可以帮助解决此限制,并加速具有目标特性的材料。在本文中,我们回顾了如何利用机器学习来减少维度,以便有效地探索设计空间,加速属性评估并生成具有最佳属性的非常规材料结构。我们还讨论了有希望的未来方向,包括将机器学习集成到设计算法的多个阶段以及对机器学习模型的解释,以了解设计参数与材料属性的关系。

Designing functional materials requires a deep search through multidimensional spaces for system parameters that yield desirable material properties. For cases where conventional parameter sweeps or trial-and-error sampling are impractical, inverse methods that frame design as a constrained optimization problem present an attractive alternative. However, even efficient algorithms require time- and resource-intensive characterization of material properties many times during optimization, imposing a design bottleneck. Approaches that incorporate machine learning can help address this limitation and accelerate the discovery of materials with targeted properties. In this article, we review how to leverage machine learning to reduce dimensionality in order to effectively explore design space, accelerate property evaluation, and generate unconventional material structures with optimal properties. We also discuss promising future directions, including integration of machine learning into multiple stages of a design algorithm and interpretation of machine learning models to understand how design parameters relate to material properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源