论文标题
群体上不变积分理论的血统:Hurwitz,Schur,Weyl,Haar,Neumann,Kakutani,Weil,Kakutani-Kodaira
Lineage of the Theory of Invariant Integrals on Groups: Hurwitz, Schur, Weyl, Haar, Neumann, Kakutani, Weil, Kakutani-Kodaira
论文作者
论文摘要
这主要是Proc的翻译。第29次症状。关于数学历史,图达大学,2018年10月,我的演讲。我第一次研究不变式积分理论的历史(或措施)是一个意外的机会,我被要求写给新书M. Saito教授的新书《 kaisetsu》(解释性和评论文章),这是一本日语,是著名的Weil著作的书《著名的weil'intégrations“ dans les les les les les les les les topogoges topogoges topologes et topogiques et t topog”''。就我个人而言,对于我的专业工作,只需要阅读Weil的原始书籍和几本有关衡量理论的教科书即可。为了撰写上面提到的Kaisetsu,除了几篇数学论文以及Weil的非数学作品之外,我足以阅读Haar的原始论文,以大致而类似地阅读其他历史经典。因此,我感到有必要进行进一步的研究,现在我进行了一项历史研究。详细阅读了由于Hurwitz,Schur,Weyl等原因,我从我的角度解释了它们的内容,并给出了它们之间的关系。我进行了一项历史研究。详细阅读了由于Hurwitz,Schur,Weyl等原因,我从我的角度解释了它们的内容,并给出了它们之间的关系。
This is mainly a translation of Proc. of the 29th Symp. on History of Mathematics, Tsuda University, held Oct. 2018, of my talk. The first occasion when I studied the history of the theory of invariant integrals (or measures) was an unintended opportunity where I was asked to write "Kaisetsu" (explanatory and commentary article) to the new book of Prof. M. Saito, a first translation into Japanese of the famous Weil's book "L'intégrations dans les groupes topologiques et...". Personally, for my professional work, it was needed only to read this Weil's original book and several text books on measure theory. For writing the Kaisetsu mentioned above, other than several mathematical papers and also Weil's non-mathematical works, it was sufficient for me to read Haar's original paper roughly and similarly for other historical classics. Thus I felt the necessity of further study and now I make intendedly a historical study. Reading original papers due to Hurwitz, Schur, Weyl and so on in detail, I explain their contents from my point of view, and give the relationships among them. I make intendedly a historical study. Reading original papers due to Hurwitz, Schur, Weyl and so on in detail, I explain their contents from my point of view, and give the relationships among them.