论文标题

罗马:基于微服务的5G应用程序的资源编排

ROMA: Resource Orchestration for Microservices-based 5G Applications

论文作者

Gholami, Anousheh, Rao, Kunal, Hsiung, Wang-Pin, Po, Oliver, Sankaradas, Murugan, Chakradhar, Srimat

论文摘要

随着5G的增长,物联网(IoT),边缘计算和云计算技术,可用于新兴应用程序的基础架构(计算和网络)(AR/VR,自动驾驶,行业4.0等)变得非常复杂。有多个计算层(IoT设备,近边缘,远端,云等)与不同类型的网络技术(LAN,LTE,5G,MAN,MAN,WAN等)连接。在这种环境中的应用程序的部署和管理非常具有挑战性。在本文中,我们提出了Roma,该罗姆人在动态,异质,多层计算和网络结构中为基于微服务的5G应用程序进行资源编排。我们假设只有已知的应用程序级要求,并且未指定应用程序中各个微服务的详细要求。作为解决方案的一部分,Roma确定并利用了各种微服务的计算和网络使用之间的耦合关系,并解决了优化问题,以便适当地确定应如何将每个微服务部署在复杂的,多层的计算和网络结构中,以便满足最终的终端应用程序要求。我们在视频监视和智能运输系统(ITS)域中实施了两个现实世界5G应用程序。通过广泛的实验,我们表明Roma能够分别节省90%,55%和44%的计算,以及分别为监视(监视清单)和运输应用程序(人和汽车检测)的80%,95%和75%的网络带宽。在兑现应用程序性能要求的同时,可以实现这一改进,并且通过忽略资源耦合关系,采用静态且管理过度的资源分配策略。

With the growth of 5G, Internet of Things (IoT), edge computing and cloud computing technologies, the infrastructure (compute and network) available to emerging applications (AR/VR, autonomous driving, industry 4.0, etc.) has become quite complex. There are multiple tiers of computing (IoT devices, near edge, far edge, cloud, etc.) that are connected with different types of networking technologies (LAN, LTE, 5G, MAN, WAN, etc.). Deployment and management of applications in such an environment is quite challenging. In this paper, we propose ROMA, which performs resource orchestration for microservices-based 5G applications in a dynamic, heterogeneous, multi-tiered compute and network fabric. We assume that only application-level requirements are known, and the detailed requirements of the individual microservices in the application are not specified. As part of our solution, ROMA identifies and leverages the coupling relationship between compute and network usage for various microservices and solves an optimization problem in order to appropriately identify how each microservice should be deployed in the complex, multi-tiered compute and network fabric, so that the end-to-end application requirements are optimally met. We implemented two real-world 5G applications in video surveillance and intelligent transportation system (ITS) domains. Through extensive experiments, we show that ROMA is able to save up to 90%, 55% and 44% compute and up to 80%, 95% and 75% network bandwidth for the surveillance (watchlist) and transportation application (person and car detection), respectively. This improvement is achieved while honoring the application performance requirements, and it is over an alternative scheme that employs a static and overprovisioned resource allocation strategy by ignoring the resource coupling relationships.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源