论文标题

加权$ l^2 $ holomorthic功能在紧凑型kähler歧管上的球纤维束上

Weighted $L^2$ Holomorphic functions on ball-fiber bundles over compact Kähler manifolds

论文作者

Lee, Seungjae, Seo, Aeryeong

论文摘要

令$ \ widetilde {m} $为复杂的歧管,$γ$为$ \ text {aut}(\ widetilde {m})$的无扭转的cococompact晶格。令$ρ\colonγ\至su(n,1)$为表示形式,$ m:= \ widetilde m/γ$为$ n $二维紧凑型复杂的复合歧管,它承认$ \ imath $ \ imath $ to $ \ imth $σ:在本文中,我们研究了纤维束上的加权$ l^2 $ holomorphic函数之间的关系:= m \times_ρ\ mathbb b^n $与靠背bundle $ \ imath $ \ imath^{ - 1} { - 1}(s^mt^*_ =_σ)$ $ m $ m $ m $ $ m $ $ $ $ $ $ mathbb b^n $与holomorphic部分。特别是,$ a^2_α(ω)$对于任何$α> -1 $具有无限尺寸,如果$ n <n $,则$ a^2 _ { - 1}(ω)$也具有相同的属性。 As an application, if $Γ$ is a torsion-free cocompact lattice in $SU(n,1)$, $n\geq 2$, and $ρ\colon Γ\to SU(N,1)$ is a maximal representation, then for any $α>-1$, $A^2_α(\mathbb B^n\times_ρ \mathbb B^N)$ has infinite dimension.如果$ n <n $,则$ a _ { - 1}^2(\ mathbb b^n \times_ρ\ mathbb b^n)$也具有相同的属性。

Let $\widetilde{M}$ be a complex manifold and $Γ$ be a torsion-free cocompact lattice of $\text{Aut}(\widetilde{M})$. Let $ρ\colonΓ\to SU(N,1)$ be a representation and $M:=\widetilde M/Γ$ be an $n$-dimensional compact complex manifold which admits a holomorphic embedding $\imath$ into $Σ:=\mathbb B^N/ρ(Γ)$. In this paper, we investigate a relation between weighted $L^2$ holomorphic functions on the fiber bundle $Ω:=M\times_ρ\mathbb B^N$ and the holomorphic sections of the pull-back bundle $\imath^{-1}(S^mT^*_Σ)$ over $M$. In particular, $A^2_α(Ω)$ has infinite dimension for any $α>-1$ and if $n<N$, then $A^2_{-1}(Ω)$ also has the same property. As an application, if $Γ$ is a torsion-free cocompact lattice in $SU(n,1)$, $n\geq 2$, and $ρ\colon Γ\to SU(N,1)$ is a maximal representation, then for any $α>-1$, $A^2_α(\mathbb B^n\times_ρ \mathbb B^N)$ has infinite dimension. If $n<N$, then $A_{-1}^2(\mathbb B^n\times_ρ \mathbb B^N)$ also has the same property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源