论文标题
$ \ mathbb {z} _n \ rtimes \ mathbb {z} _2 $
Hopf-Galois Realizability of $\mathbb{Z}_n\rtimes\mathbb{Z}_2$
论文作者
论文摘要
令$ g $和$ n $是有限群,订单$ 2N $,其中$ n $很奇怪。我们说,如果$ g $是$ \ h(n)= n \ rtimes \ au(n)$的常规子组,那么这对$(g,n)$是可以实现的hopf-galois。在本文中,当$ n $(类似的$ g $)是一组$ \ mathbb {z} _n \ rtimes \ mathbb {z} _2 $时,我们给出了$ g $(类似$ n $)的必要条件。此外,我们表明,如果$ n $的根本是一个伯恩赛德号,则这种情况也足够了。这将分类所有具有同型组(或乘法组)为$ \ Mathbb {z} _n \ rtimes \ mathbb {z} _2 $的偏斜括号。
Let $G$ and $N$ be finite groups of order $2n$ where $n$ is odd. We say the pair $(G,N)$ is Hopf-Galois realizable if $G$ is a regular subgroup of $\h(N)=N\rtimes\au(N)$. In this article we give necessary conditions on $G$ (similarly $N$) when $N$ (similarly $G$) is a group of the form $\mathbb{Z}_n\rtimes\mathbb{Z}_2$. Further we show that this condition is also sufficient if radical of $n$ is a Burnside number. This classifies all the skew braces which has the additive group (or the multiplicative group) to be isomorphic to $\mathbb{Z}_n\rtimes\mathbb{Z}_2$, in this case.