论文标题

良好的一阶系统最小二乘配方的设备stokes方程式

A well-posed First Order System Least Squares formulation of the instationary Stokes equations

论文作者

Gantner, Gregor, Stevenson, Rob

论文摘要

在本文中,良好的同时时空一阶系统最小二乘配方是由具有滑动边界条件的机构不可压缩的Stokes方程构建的。由于这种良好的态度,在速度,压力和应力张量的任何有限元元素空间上的三重构象元素空间上的最小化最小化得出了该三倍的准最佳近似值。从最小二乘功能中的所有规范都可以进行有效评估的意义上,该公式是实用的。作为最小二乘类型,该公式具有有效且可靠的后验误差估计器。另外,得出了先验误差估计,并提出了数值结果。

In this paper, a well-posed simultaneous space-time First Order System Least Squares formulation is constructed of the instationary incompressible Stokes equations with slip boundary conditions. As a consequence of this well-posedness, the minimization over any conforming triple of finite element spaces for velocities, pressure and stress tensor gives a quasi-best approximation from that triple. The formulation is practical in the sense that all norms in the least squares functional can be efficiently evaluated. Being of least squares type, the formulation comes with an efficient and reliable a posteriori error estimator. In addition, a priori error estimates are derived, and numerical results are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源