论文标题
宽覆盖,可解释的认知系统的语言生成
Language Generation for Broad-Coverage, Explainable Cognitive Systems
论文作者
论文摘要
本文介绍了自然语言生成(NLG)的最新进展(NLG),用于在代理认知体系结构内开发的语言智能代理(LEIA)。该方法从过去的自然语言理解中大量借鉴了这种范式:它使用相同的知识库,计算语言学理论,代理体系结构和方法论,这些方法随着时间的推移发展宽覆盖能力,同时仍然支持近期应用。
This paper describes recent progress on natural language generation (NLG) for language-endowed intelligent agents (LEIAs) developed within the OntoAgent cognitive architecture. The approach draws heavily from past work on natural language understanding in this paradigm: it uses the same knowledge bases, theory of computational linguistics, agent architecture, and methodology of developing broad-coverage capabilities over time while still supporting near-term applications.