论文标题
在Tutte多项式的系数上,Brylawski定理的简短证明
Short proof of a theorem of Brylawski on the coefficients of the Tutte polynomial
论文作者
论文摘要
在此简短说明中,我们表明,一个$ m =(e,r)$,带有地面套装$ $ m $的$ e $和(等级)函数$ r:2^e \ to \ mathbb {z} _ {\ geq 0} $满足$ r(S) $ t_m(x,y):= \ sum_ {s \ subseteq e}(x-1)^{r(e)-r(s)}(y-1)(y-1)^{| s | -r(s s)},$$写成$ t_m(x,x,y) \ geq 0 $,我们有$ \ sum_ {i = 0}^h \ sum_ {j = 0}^{h-i} \ binom {h-i} {h-i} {j} {j}( - 1)^jt_ {jt_ {ij} =(ij} =(ij} =( - 1)使用以下公约,即当$ h <m $时,二项式系数$ \ binom {h-r} {h-m} $被解释为$ 0 $。这将Brylawski定理在Matroid等级函数和$ H <m $上,以及$ H \ leq m $的Gordon定理,对等级功能具有相同的假设。此处提供的证明比以前的证明要短得多。我们仅使用这样一个事实,即Tutte多项式$ T_M(X,Y)$简化为$(X-1)^{r(e)} y^{| e |} $沿Hyperbola $(X-1)(y-1)= 1 $。
In this short note we show that a system $M=(E,r)$ with a ground set $E$ of size $m$ and (rank) function $r: 2^E\to \mathbb{Z}_{\geq 0}$ satisfying $r(S)\leq \min(r(E),|S|)$ for every set $S\subseteq E$, the Tutte polynomial $$T_M(x,y):=\sum_{S\subseteq E}(x-1)^{r(E)-r(S)}(y-1)^{|S|-r(S)},$$ written as $T_M(x,y)=\sum_{i,j}t_{ij}x^iy^j$, satisfies that for any integer $h \geq 0$, we have $$\sum_{i=0}^h\sum_{j=0}^{h-i}\binom{h-i}{j}(-1)^jt_{ij}=(-1)^{m-r}\binom{h-r}{h-m},$$ where $r=r(E)$, and we use the convention that when $h<m$, the binomial coefficient $\binom{h-r}{h-m}$ is interpreted as $0$. This generalizes a theorem of Brylawski on matroid rank functions and $h<m$, and a theorem of Gordon for $h\leq m$ with the same assumptions on the rank function. The proof presented here is significantly shorter than the previous ones. We only use the fact that the Tutte polynomial $T_M(x,y)$ simplifies to $(x-1)^{r(E)}y^{|E|}$ along the hyperbola $(x-1)(y-1)=1$.