论文标题
具有参数化演化的本地度量
Local Metric with Parameterized Evolution
论文作者
论文摘要
我们提出了一个典型的哈密顿公式,其中$τ$是系统演化的参数,在时空外部,扮演着与我们在非率主义力学中所谓的时间相似的角色。这种方法被称为Stueckelberg-Horwitz-Piron(SHP)理论,继承了经典分析力学的完整计算能力,同时在整个过程中保持了显然协方差,并消除了可能与一般的差异不变性的冲突。特别是,SHP简化了在高度动态相互作用(例如黑洞碰撞)中潜在应用的初始值问题。通过允许能量量张量和度量标准明确依赖于$τ$,我们可以相对于动态发展的背景度量来描述地球形式的粒子运动。作为玩具型号,我们考虑了$τ$依赖性的质量$ m(τ)$,首先是牛顿近似中的扰动,然后是Schwarzschild类似的度量。正如预期的那样,扩展的爱因斯坦方程意味着与$ dm /dτ$成比例的非零能量量张量,代表了质量和能量流入时空的流动,这与不断变化的源质量相对应。在$τ$平衡中,该系统成为一种广义的Schwarzschild解决方案,扩展的Ricci张量和能量弹药张量消失了。
We present a canonical Hamiltonian formulation of GR in which $τ$, the parameter of system evolution, is external to spacetime, playing a role similar to what we call time in nonrelativistic mechanics. This approach, known as Stueckelberg-Horwitz-Piron (SHP) theory, inherits the full computational power of classical analytical mechanics while maintaining manifest covariance throughout and eliminating possible conflict with general diffeomorphism invariance. In particular, SHP simplifies the initial value problem with potential applications in highly dynamical interactions, such as black hole collisions. By allowing the energy-momentum tensor and metric to depend explicitly on $τ$, we may describe particle motion in geodesic form with respect to a dynamically evolving background metric. As a toy model, we consider a $τ$-dependent mass $M(τ)$, first as a perturbation in the Newtonian approximation and then for a Schwarzschild-like metric. As expected, the extended Einstein equations imply a non-zero energy-momentum tensor, proportional to $dM / dτ$, representing a flow of mass and energy into spacetime that corresponds to the changing source mass. In $τ$-equilibrium, this system becomes a generalized Schwarzschild solution for which the extended Ricci tensor and energy-momentum tensor vanish.