论文标题

通过对比度学习和句子图网络建模多层次上下文以进行信息偏见检测

Modeling Multi-level Context for Informational Bias Detection by Contrastive Learning and Sentential Graph Network

论文作者

Guo, Shijia, Zhu, Kenny Q.

论文摘要

新闻文章中广泛存在信息偏见。它是指某些实体的特定方面的单方面,选择性或暗示性信息来指导特定的解释,从而偏见读者的意见。句子级信息偏见检测是一项非常具有挑战性的任务,只能与上下文一起揭示此类偏见,例如,包括从各种来源收集信息或结合背景结合整个文章的信息。在本文中,我们整合了三个级别的上下文,以检测英语新闻文章中的句子级信息偏见:邻近的句子,整篇文章以及其他新闻媒体的文章,描述了同一事件。我们的模型MultictX(多级上下文),将对比度学习和句子图与图形注意网络(GAT)一起使用,通过战术构成对比度的三胞胎并在事件中构造句子图,在不同阶段在不同阶段编码这三个上下文。我们的实验证明,对比度学习与句子图有效地在不同程度上合并了上下文,并且在信息偏见检测中明显优于当前的SOTA模型句子。

Informational bias is widely present in news articles. It refers to providing one-sided, selective or suggestive information of specific aspects of certain entity to guide a specific interpretation, thereby biasing the reader's opinion. Sentence-level informational bias detection is a very challenging task in a way that such bias can only be revealed together with the context, examples include collecting information from various sources or analyzing the entire article in combination with the background. In this paper, we integrate three levels of context to detect the sentence-level informational bias in English news articles: adjacent sentences, whole article, and articles from other news outlets describing the same event. Our model, MultiCTX (Multi-level ConTeXt), uses contrastive learning and sentence graphs together with Graph Attention Network (GAT) to encode these three degrees of context at different stages by tactically composing contrastive triplets and constructing sentence graphs within events. Our experiments proved that contrastive learning together with sentence graphs effectively incorporates context in varying degrees and significantly outperforms the current SOTA model sentence-wise in informational bias detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源