论文标题

迈向目标生成的视频游戏水平的客观指标

Towards Objective Metrics for Procedurally Generated Video Game Levels

论文作者

Beukman, Michael, James, Steven, Cleghorn, Christopher

论文摘要

随着学术界和游戏开发人员对程序内容产生的兴趣越来越大,可以公平地比较不同的方法至关重要。但是,由于缺乏标准化的,独立于游戏的指标,评估程序生成的视频游戏水平通常很困难。在本文中,我们介绍了两个基于仿真的评估指标,涉及分析A*代理的行为,以衡量以一般,独立的方式衡量生成水平的多样性和难度。通过使用编辑距离比较不同级别的动作轨迹来计算多样性,并且难以衡量的是,在代理可以解决水平之前,必须进行a*搜索树的探索和扩展。我们证明,与当前方法相比,我们的多样性指标对水平大小和表示的变化更为强大,并衡量直接影响可玩性的因素,而不是关注视觉信息。难度指标显示出希望,因为它与一个经过测试的域的现有难度估计相关,但它确实在另一个领域面临一些挑战。最后,为了促进可重复性,我们公开发布了评估框架。

With increasing interest in procedural content generation by academia and game developers alike, it is vital that different approaches can be compared fairly. However, evaluating procedurally generated video game levels is often difficult, due to the lack of standardised, game-independent metrics. In this paper, we introduce two simulation-based evaluation metrics that involve analysing the behaviour of an A* agent to measure the diversity and difficulty of generated levels in a general, game-independent manner. Diversity is calculated by comparing action trajectories from different levels using the edit distance, and difficulty is measured as how much exploration and expansion of the A* search tree is necessary before the agent can solve the level. We demonstrate that our diversity metric is more robust to changes in level size and representation than current methods and additionally measures factors that directly affect playability, instead of focusing on visual information. The difficulty metric shows promise, as it correlates with existing estimates of difficulty in one of the tested domains, but it does face some challenges in the other domain. Finally, to promote reproducibility, we publicly release our evaluation framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源