论文标题
使用基于GAN的X射线图像中的自适应输入图像归一化解决类内模式崩溃问题
Addressing the Intra-class Mode Collapse Problem using Adaptive Input Image Normalization in GAN-based X-ray Images
论文作者
论文摘要
由于目标疾病的稀有性,生物医学图像数据集可能会失衡。生成对抗网络通过使合成图像的生成增强数据集来解决这种不平衡。重要的是生成合成图像,该图像结合了各种特征,以准确表示训练图像中存在的特征的分布。此外,合成图像中缺少各种特征会降低机器学习分类器的性能。模式崩溃问题可能会影响生成对抗网络产生多元化图像的能力。模式崩溃有两个品种:阶层内和班级。在本文中,研究了类内模式崩溃问题,并评估了其对合成X射线图像多样性的后续影响。这项工作促进了对深度卷积GAN的自适应输入图像归一化的益处的好处,以减轻阶层内模式崩溃问题。结果表明,具有自适应输入图像归一化的DCGAN优于DCGAN,其X射线图像是卓越多样性得分可见的。
Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment datasets. It is important to generate synthetic images that incorporate a diverse range of features to accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem can impact a Generative Adversarial Network's capacity to generate diversified images. Mode collapse comes in two varieties: intra-class and inter-class. In this paper, the intra-class mode collapse problem is investigated, and its subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization for the Deep Convolutional GAN to alleviate the intra-class mode collapse problem. Results demonstrate that the DCGAN with adaptive input-image normalization outperforms DCGAN with un-normalized X-ray images as evident by the superior diversity scores.