论文标题

使用无监督的机器学习来量化多样化且快速变化的人口中的加速度计量学

Using unsupervised machine learning to quantify physical activity from accelerometry in a diverse and rapidly changing population

论文作者

Thornton, Christopher B, Kolehmainen, Niina, Nazarpour, Kianoush

论文摘要

加速度计广泛用于衡量身体活动行为,包括儿童。处理加速数据的传统方法使用切点来定义身体活动强度,并依靠将加速度与能量消耗相关的校准研究。但是,这些关系并未概括在不同的人群中,因此必须对每个亚种群(例如年龄段)进行参数,这是昂贵的,并且使各种人群进行研究,并且随着时间的流逝而变得困难。数据驱动的方法允许体育活动强度状态从数据中出来,而无需依赖于外部人群的参数,并就此问题提供了新的观点并有可能改善结果。我们采用了一种无监督的机器学习方法,即一种隐藏的半马尔可夫模型,以分割和聚类从279名儿童(9至38个月大)记录的加速度计数据,具有各种物理和社会认知能力(使用残疾库存的儿科评估来测量)。我们使用针对人群的最佳可用阈值计算的切点方法对此分析进行了基准测试。通过这种无监督的方法衡量的活动所花费的时间与使用切点接近的孩子的行动能力,社会认知能力,独立性,日常活动和年龄更加密切相关。与当前的切点方法相比,无监督的机器学习提供了提供更敏感,适当和具有成本效益的方法来量化各种人群的体育活动行为。反过来,这支持了更具多种多样或快速变化的人群的研究。

Accelerometers are widely used to measure physical activity behaviour, including in children. The traditional method for processing acceleration data uses cut points to define physical activity intensity, relying on calibration studies that relate the magnitude of acceleration to energy expenditure. However, these relationships do not generalise across diverse populations and hence they must be parametrised for each subpopulation (e.g., age groups) which is costly and makes studies across diverse populations and over time difficult. A data driven approach that allows physical activity intensity states to emerge from the data, without relying on parameters derived from external populations, and offers a new perspective on this problem and potentially improved results. We applied an unsupervised machine learning approach, namely a hidden semi Markov model, to segment and cluster the accelerometer data recorded from 279 children (9 to 38 months old) with a diverse range of physical and social-cognitive abilities (measured using the Paediatric Evaluation of Disability Inventory). We benchmarked this analysis with the cut points approach calculated using the best available thresholds for the population. Time spent active as measured by this unsupervised approach correlated more strongly with measures of the childs mobility, social-cognitive capacity, independence, daily activity, and age than that measured using the cut points approach. Unsupervised machine learning offers the potential to provide a more sensitive, appropriate, and cost-effective approach to quantifying physical activity behaviour in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive of diverse or rapidly changing populations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源