论文标题

通过深度加强学习对无线网络的延迟公平优化

Latency Fairness Optimization on Wireless Networks through Deep Reinforcement Learning

论文作者

López-Sánchez, M., Villena-Rodríguez, A., Gómez, G., Martín-Vega, F. J., Aguayo-Torres, M. C.

论文摘要

在本文中,我们提出了一个新颖的深入增强学习框架,以最大程度地提高用户的公平性。为此,我们设计了一个新版本的修改后的最大加权延迟(M-LWDF)算法,该算法称为$β$ -M-LWDF,旨在实现用户公平和平均延迟之间的适当平衡。此余额定义为用户延迟的累积分布函数(CDF)的可行区域,该区域允许识别不公平状态,可行的状态和过高的状态。模拟结果表明,我们提出的框架在潜伏公平和平均延迟方面优于传统资源分配技术

In this paper, we propose a novel deep reinforcement learning framework to maximize user fairness in terms of delay. To this end, we devise a new version of the modified largest weighted delay first (M-LWDF) algorithm, which is called $β$-M-LWDF, aiming to fulfill an appropriate balance between user fairness and average delay. This balance is defined as a feasible region on the cumulative distribution function (CDF) of the user delay that allows identifying unfair states, feasible-fair states, and over-fair states. Simulation results reveal that our proposed framework outperforms traditional resource allocation techniques in terms of latency fairness and average delay

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源