论文标题

t残局 - 插入式纠正代码

t-Deletion-s-Insertion-Burst Correcting Codes

论文作者

Lu, Ziyang, Zhang, Yiwei

论文摘要

在基于DNA的存储和通信系统中的应用中,我们同时研究了删除和插入错误。特别是,我们研究了一种名为$ t $ -doletion- $ s $ s $ insertion-burst($(t,s)$ - 短爆发)的错误类型,这是Schoeny {\ it等人提出的$(2,1)$ - 爆发错误的概括。 al}。此类错误删除了$ t $ cotaine符号,并在同一坐标处插入一个任意长度$ s $的序列。我们在可以纠正$(t,s)$ - 爆发错误的二进制代码大小上提供了一个球形的上限,表明此类代码的冗余至少为$ \ log n+t-1 $。对于$ t \ geq 2s $,给出了带有冗余$ \ log n+(t-s-1)\ log \ log \ log \ log n+o(1)$的二进制$(t,s)$的明确构造。特别是,我们构建了一个二进制$(3,1)$ - 爆发校正代码,最多$ \ log n+9 $,最佳达到常数。

Motivated by applications in DNA-based storage and communication systems, we study deletion and insertion errors simultaneously in a burst. In particular, we study a type of error named $t$-deletion-$s$-insertion-burst ($(t,s)$-burst for short) which is a generalization of the $(2,1)$-burst error proposed by Schoeny {\it et. al}. Such an error deletes $t$ consecutive symbols and inserts an arbitrary sequence of length $s$ at the same coordinate. We provide a sphere-packing upper bound on the size of binary codes that can correct a $(t,s)$-burst error, showing that the redundancy of such codes is at least $\log n+t-1$. For $t\geq 2s$, an explicit construction of binary $(t,s)$-burst correcting codes with redundancy $\log n+(t-s-1)\log\log n+O(1)$ is given. In particular, we construct a binary $(3,1)$-burst correcting code with redundancy at most $\log n+9$, which is optimal up to a constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源