论文标题

PREVIS - 用于组装质量控制的互动反向工程的机器学习和视觉插值方法

PREVIS -- A Combined Machine Learning and Visual Interpolation Approach for Interactive Reverse Engineering in Assembly Quality Control

论文作者

Ruediger, Patrick, Claus, Felix, Leonhardt, Viktor, Hagen, Hans, Aurich, Jan C., Garth, Christoph

论文摘要

我们介绍了一种视觉分析工具Previs,并在工程应用中增强了机器学习绩效分析。提出的工具链可以直接比较回归模型。此外,我们还提供了一种方法,以通过利用标准插值方法来可视化回归误差对原始域(部分几何形状)感兴趣领域的影响。此外,我们允许通过视觉插值实时预览位移字段中用户驱动的参数更改。这允许快速,负责任的在线变更管理。我们通过对汽车引擎罩的前优化进行了优化,证明了有效性。

We present PREVIS, a visual analytics tool, enhancing machine learning performance analysis in engineering applications. The presented toolchain allows for a direct comparison of regression models. In addition, we provide a methodology to visualize the impact of regression errors on the underlying field of interest in the original domain, the part geometry, via exploiting standard interpolation methods. Further, we allow a real-time preview of user-driven parameter changes in the displacement field via visual interpolation. This allows for fast and accountable online change management. We demonstrate the effectiveness with an ex-ante optimization of an automotive engine hood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源