论文标题

谐波maass形式的l值

L-values of harmonic Maass forms

论文作者

Diamantis, Nikolaos, Rolen, Larry

论文摘要

Bruinier,Funke和Imamoglu已证明了一个模块化$ J $ -INVARIANT的哲学上可以称为“中央$ l $ value”的公式。以前,这是Zagier提出的启发性。在这里,我们将此“ $ l $ - 价值”解释为实际$ l $ series的价值,并将其扩展到所有不可或缺的论点,并将其扩展到包括所有弱塑形尖端形式的大量谐波maass形式。讨论了与先前定义的$ l $ series的上下文和关系,用于弱塑形和谐波形式。这些公式建议在这些情况下$ l $值的算术或几何含义。证明的关键要素是应用Lee,Raji和作者的最新理论来描述使用测试功能的谐波Maass $ L $ functions。

Bruinier, Funke, and Imamoglu have proved a formula for what can philosophically be called the "central $L$-value" of the modular $j$-invariant. Previously, this had been heuristically suggested by Zagier. Here, we interpret this "$L$-value" as the value of an actual $L$-series, and extend it to all integral arguments and to a large class of harmonic Maass forms which includes all weakly holomorphic cusp forms. The context and relation to previously defined $L$-series for weakly holomorphic and harmonic Maass forms are discussed. These formulas suggest possible arithmetic or geometric meaning of $L$-values in these situations. The key ingredient of the proof is to apply a recent theory of Lee, Raji, and the authors to describe harmonic Maass $L$-functions using test functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源