论文标题
由于RFC1膨胀而导致的帆布运动神经元病理
Motor neuron pathology in CANVAS due to RFC1 expansions
论文作者
论文摘要
由RFC1双重扩张引起的帆布是遗传性感觉神经病的主要原因。 RFC1扩展的检测具有挑战性,画布可能与非典型特征有关。我们在临床和遗传上表征了50名患者,根据EMG证实的感觉神经疾病的存在选择。我们通过PCR,重复PR的PCR筛选了RFC1的扩展,并筛选了远程PCR产品的Southern印迹,这是一种新开发的方法。在一名患者的大脑和脊髓上进行了神经病理学表征。大多数患者(88%)在RFC1中携带双重(AAGGG)N扩展。除了核心帆布表型(感觉神经疾病,小脑综合征和前庭障碍)之外,我们还观察到慢性咳嗽(97%),眼球症状(85%),运动神经元受累(55%),Dysautonomia(55%),Dysautononia(50%)和Parkinsonismiss(10%)。 38例患者中有24例(63.1%)发现运动神经元受累。在29%的患者中,存在第一个运动神经元的迹象,例如轻反射,伸足面反应和/或痉挛,第二个运动神经元的体征,例如筋膜,浪费,浪费,虚弱或EMG的神经源性模式为18%,均为16%。在19%的患者中观察到混合运动和感觉神经疾病。在六名非RFC1患者中,一名携带杂合的AAGGG扩展和GRM1中的致病变异。对一名具有富集表型的RFC1患者的神经病理学检查,包括帕金森氏症,动力学和认知能力下降,显示后柱和腰部后根部萎缩。前庭脊髓和脊椎小节的变性很温和。我们观察到腰椎前角的第一和第二运动神经元之间突触的星形细胞神经胶质病和轴突肿胀。小脑显示出轻度的浦肯野细胞耗尽,带有空篮子,鱼雷和星形胶质细胞增多症,其特征是伯格曼radial胶质神经胶质的混乱。我们发现迷走神经核中的神经元丧失。黑质的pars compacta被耗尽,在层层,黑质,海马,内嗅皮层和杏仁核的位置上有广泛的路易尸体。我们提出了考虑不同的扩展图案的新指南,以筛选RFC1扩展。在这里,我们开发了一种新方法,可以更轻松地检测病原RFC1的扩展。我们报告了频繁的运动神经元受累和不同的神经疾病亚型。帕金森氏症在这一队列中比普通人群更为普遍,而预期的1%比普通人群更为普遍(p <.001)。我们首次描述了画布中的脊髓病理学,显示后柱和根的改变,星形胶质神经胶质病和轴突肿胀,表明运动神经元突触功能障碍。
CANVAS caused by RFC1 biallelic expansions is a major cause of inherited sensory neuronopathy. Detection of RFC1 expansion is challenging and CANVAS can be associated with atypical features. We clinically and genetically characterized 50 patients, selected based on the presence of sensory neuronopathy confirmed by EMG. We screened RFC1 expansion by PCR, repeat-primed PCR, and Southern blotting of long-range PCR products, a newly developed method. Neuropathological characterization was performed on the brain and spinal cord of one patient. Most patients (88%) carried a biallelic (AAGGG)n expansion in RFC1. In addition to the core CANVAS phenotype (sensory neuronopathy, cerebellar syndrome, and vestibular impairment), we observed chronic cough (97%), oculomotor signs (85%), motor neuron involvement (55%), dysautonomia (50%), and parkinsonism (10%). Motor neuron involvement was found for 24 of 38 patients (63.1%). First motor neuron signs, such as brisk reflexes, extensor plantar responses, and/or spasticity, were present in 29% of patients, second motor neuron signs, such as fasciculations, wasting, weakness, or a neurogenic pattern on EMG in 18%, and both in 16%. Mixed motor and sensory neuronopathy was observed in 19% of patients. Among six non-RFC1 patients, one carried a heterozygous AAGGG expansion and a pathogenic variant in GRM1. Neuropathological examination of one RFC1 patient with an enriched phenotype, including parkinsonism, dysautonomia, and cognitive decline, showed posterior column and lumbar posterior root atrophy. Degeneration of the vestibulospinal and spinocerebellar tracts was mild. We observed marked astrocytic gliosis and axonal swelling of the synapse between first and second motor neurons in the anterior horn at the lumbar level. The cerebellum showed mild depletion of Purkinje cells, with empty baskets, torpedoes, and astrogliosis characterized by a disorganization of the Bergmann's radial glia. We found neuronal loss in the vagal nucleus. The pars compacta of the substantia nigra was depleted, with widespread Lewy bodies in the locus coeruleus, substantia nigra, hippocampus, entorhinal cortex, and amygdala. We propose new guidelines for the screening of RFC1 expansion, considering different expansion motifs. Here, we developed a new method to more easily detect pathogenic RFC1 expansions. We report frequent motor neuron involvement and different neuronopathy subtypes. Parkinsonism was more prevalent in this cohort than in the general population, 10% versus the expected 1% (p < .001). We describe, for the first time, the spinal cord pathology in CANVAS, showing the alteration of posterior columns and roots, astrocytic gliosis and axonal swelling, suggesting motor neuron synaptic dysfunction.