论文标题

$ Q $ -Bernoulli jackson生成的多项式$ q $ -Bessel功能

Generalized $q$-Bernoulli polynomials generated by Jackson $q$-Bessel functions

论文作者

Eweis, S. Z., Mansour, Zeinab S. I.

论文摘要

在本文中,我们介绍了由函数(包括杰克逊$ q $ -bessel functions $ j $ j^{(k)}_α(x; q)$(x; q)$(k = 1,2,3),\,\,α> -1 $ 1 $的函数生成的多项式$ b^{(k)} _ {(k)} _ {(k)} _ {(k)} _ {(k)} _ {(k)} _ {(k)} _ {(k)}(x; q)$。 $α= \ pm \ frac {1} {2} $是Bernoulli和Euler $^{,} $ s的$ q $ -sanalogs,由Ismail和Mansour介绍的$(k = 1,2)$,Mansour和Al-Towalib,for Mansour and Mansour and Mansour for Mansour and Mansour for $(k = 1,2)$(k = 1,2)$(k = 3)$。我们研究了这些多项式的主要属性,它们的大$ n $渐近学,并使用$ q $ laguerre的多项式和小$ q $ leggendre多项式提供了连接系数。

In this paper, we introduce the polynomials $B^{(k)}_{n,α}(x;q)$ generated by a function including Jackson $q$-Bessel functions $J^{(k)}_α(x;q)$ $ (k=1,2,3),\,α>-1$. The cases $α=\pm\frac{1}{2}$ are the $q$-analogs of Bernoulli and Euler$^{,}$s polynomials introduced by Ismail and Mansour for $(k=1,2)$, Mansour and Al-Towalib for $(k=3)$. We study the main properties of these polynomials, their large $n$ degree asymptotics and give their connection coefficients with the $q$-Laguerre polynomials and little $q$-Legendre polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源