论文标题

使用密度矩阵的量子密度估计:应用于量子异常检测

Quantum density estimation with density matrices: Application to quantum anomaly detection

论文作者

Useche, Diego H., Bustos-Brinez, Oscar A., Gallego-Mejia, Joseph A., González, Fabio A.

论文摘要

密度估计是统计和机器学习的核心任务。此问题旨在确定最能与观察到的数据集保持一致的潜在概率密度函数。它的某些应用包括统计推断,无监督学习和异常检测。尽管有相关性,但很少有工作探索了量子计算在密度估计中的应用。在本文中,我们基于密度矩阵的预期值和一种称为量子傅里叶特征的新型量子矩阵密度估计模型,称为Q-DEMDE,称为Q-DEMDE。该方法使用量子硬件来通过混合量子状态构建训练数据的概率分布。作为核心子例程,我们提出了一种新算法,以估计混合密度矩阵从量子计算机上的光谱分解中的预期值。此外,我们还提出了该方法的量子古典异常检测方法。我们在量子模拟器和真实量子计算机上的不同数据集上使用量子随机和量子自适应傅立叶特征评估了密度估计模型。这项工作的重要结果是表明可以在当今的量子计算机上进行高性能进行密度估计和异常检测。

Density estimation is a central task in statistics and machine learning. This problem aims to determine the underlying probability density function that best aligns with an observed data set. Some of its applications include statistical inference, unsupervised learning, and anomaly detection. Despite its relevance, few works have explored the application of quantum computing to density estimation. In this article, we present a novel quantum-classical density matrix density estimation model, called Q-DEMDE, based on the expected values of density matrices and a novel quantum embedding called quantum Fourier features. The method uses quantum hardware to build probability distributions of training data via mixed quantum states. As a core subroutine, we propose a new algorithm to estimate the expected value of a mixed density matrix from its spectral decomposition on a quantum computer. In addition, we present an application of the method for quantum-classical anomaly detection. We evaluated the density estimation model with quantum random and quantum adaptive Fourier features on different data sets on a quantum simulator and a real quantum computer. An important result of this work is to show that it is possible to perform density estimation and anomaly detection with high performance on present-day quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源